
 Disk encDisk encryptryption ..ion
 (not only) in Linux(not only) in Linux

 Milan Brož Milan Brož
 mbroz@redhat.commbroz@redhat.com

mailto:mbroz@redhat.com

FDE - Full Disk Encryption
● FDE (Full Disk Encryption) – whole disk

● FVE (Full Volume Encryption) – just some volumes

● (dis)advantages?
+ for notebook, external drives (offline protection)
+ transparent for filesystem
+ no user decision later what to (not) encrypt
+ hibernation, swap
+ key removal = easy data disposal

- more users – whole disk accessible
- key disclosure – complete data leak
- for sw sometimes performance problems

FDE - Full Disk Encryption

● userspace

● sw driver
 (encryption on CPU)

● driver + hw
 (hw acceleration)

● disk controller

● on-disk

sw

hw

● Truecrypt (FUSE handled)

● dm-crypt, Truecrypt (native), loop-AES, ...
 AES-NI, Via Padlock, special chips (mobile)

Chipset FDE
 External disk drives with USB interface with "full hw encryption"

HDD FDE
 special SSD/USB drives

Examples (illustrative)

Block device, sector
● Sector – disk atomic IO unit

● 512 bytes, 4096 bytes

● Block device

● disk, partition, virtual block devices (MD, device-mapper, loop)

● block device stacking

To avoid block/sector confusion here
sector = disk unit (typically 512 bytes)
block = encryption block (typically 16 bytes)

● FDE – encrypted block device -> decrypted block device

Plaintext & ciphertext

● plaintext – original (open) data
- virtual device

● ciphertext – encrypted data
- hw disk

● symmetric algorithms (secret key)

● speed, throughput (~disk)

● block as atomic unit (~16 bytes)

plaintext
(readable data)

block cipher

ciphertext
(encrypted data)

key

block

Cipher block mode, Initialization vector
● BLOCK (of cipher) < SECTOR (of disk)

● split sector to blocks

● chained/parallel processing

block mode

● Problem:
 same data in different sectors
 – different ciphertext

initialization vector IV (tweak)
(different for every sector)

● usually derived from seq. sector number (and key, if needed)

● e.g. ESSIV – Encrypted Salt-Sector IV

IV

...

block1 (~16 bytes)

Sector

block2

block3

blockX

Cipher
block
mode

Cipher block mode – examples

How a single change in plaintext changes ciphertext?

● CBC – cipher block chaining

● ciphertext XOR with next block

● XTS / XEX (XOR encrypt XOR)

● internally 2 keys
- key for tweak
- encryption key

● IV can be directly sector number
(known to attacker)

XTS CBC

changed byte
(in plaintext)

changed block
(in ciphertext)

 sector sector

Block mode vs sector

Goal:
arbitrary change (plaintext) – change of the whole sector (ciphertext)

Solution:

● wide mode (encryption block size = sector size)

● requires at least 2x encryption loop

● modes are patent encumbered (~ but free standard EME-2)

● not used in implementations

● additional operations

example – Elephant diffuser in Bitlocker

● special operation before CBC (mix/rotate input)

● tweak key (independent of encryption key)

Disk encryption + data channel encryption

Example: iSCSI exported encrypted disk, decryption on client side.
 Is there plain data on data channel? No.
 So it is secure? No.

● FDE is offline protection (stolen disk)

● attacker cannot access snapshots in time
(repeated access to hw, much worse attack vectors)

● mode designed for transparent disk access
(IV is always constant for sector)

● Encrypted data channel

● Attacker can listen the whole communication
but he cannot replay data – reply attack.

NEVER use encryption designed for exact use for something else,
solve problems separately (FDE + ipsec).

 Key ManagementKey Management

● very important for the encryption system security
Note difference: encryption key / unlocking passphrase

● encryption key
random, unique
generated by RNG (Random Number Generator)

or derived from passphrase
 - i.e. PBKDF2 (Password Based Key Derivation)
 - usually not desirable (~restricted in security policy)

Key generator

● outside of encrypted device
● token, SmartCard, TPM, EEPROM
● file (protected by another encryption system)
● (encrypted) on another disk (separation of metadata)

● on the same disk (with encrypted data)
● metadata (header)
● unlocking using passphrase of different key
● brute force and dictionary attack contermeasures

(slow down attack)
● hw problems (e.g. firmware sector reallocation)

● integration with key management tools
● enterprise use (LDAP, Active Directory, ...)

Key storage

● key removal (wipe of key storage area) = data disposal

● intended (secure disk disposal)

● unintended (error)
● the most common problem
● metadata overwrite – operator error
● hw error, bad sector, controller, TPM, ...

Key removal

Trade-off between security and user-friendly approach.

● disk copy (metadata)
● Key Escrow (key backup to diferent system)
● duplicated metadata on disk
● recovery key to regenerate encryption key

● wrongly designed user-friendly "extensions"
destroys security
Examples (3rd party Linux based NAS ...)

● CVE 2009-3200 - undocumented recovery key in flash memory,

allows local users decrypt the hard drive.

CVE 2009-3278 - use the rand library to generate recovery key,

brute-force attack possible.

CVE 2008-1431 - firmware stores a partition encryption key

in an unencrypted file with base64 encoding.

...

Key recovery

Attacks ...Attacks ...

● Attacks to algorithm

● Attacks to implementation
- e.g. side channels

● Obtaining key or passphrase in open form
- hw attack (keylogger, Cold Boot)
- malware – boot / OS / hypervisor modification
- social engineering

 Attacks always get better, they never get worse.

If you let your machine out of your sight,
it’s no longer your machine.

Examples of FDE implementationsExamples of FDE implementations

● Encryption on disk controller
● example: USB3 external disk enclosure
● standard SATA disk
● AES-256 encryption on chipset

Chipset FDE

● Encryption on disk controller
● which mode is used?
● where and how is the encryption key stored?
● HW board failure – what happens?

● Recovery: you need the same board / firmware
● Encryption always present (even if password is empty!)
● weak part: connectors on board

● proprietary key storage format
● proprietary key handling protocols

Chipset FDE

Truecrypt, www.truecrypt.org
● the most known "opensource" disk encryption system

● AES, Twofish, Serpent
● chained ciphers (e.g. AES-Twofish)
● XTS mode

● hidden disk (including disk with OS), bootloader
● not using TPM

● on-disk metadata encrypted (no detectable header)
● duplicated metadata
● recovery CD

● on Linux with dm-crypt backend
● tc-play reimplementation with BSD license

Truecrypt

loop-AES, loop-aes.sourceforge.org
● project outside of the main kernel tree
● loop device extension

● AES, (Twofish, Serpent)
● modified CBC mode (IV derived from sector, key and plaintext)
● multikey – 64 keys (modulo sector) + key for IV

● external store for key in file (GPG encrypted)

● dm-crypt / crypsetup loop-AES compatible mode

loop-AES

BitLocker (Windows proprietary)

Native FDE in Windows Ultimate edition
● in future combined with "secure boot" (Windows 8)
● many options (system policy)

● TPM
● TPM + PIN
● TPM + Startup Key
● Clear Key
● Startup/Recovery Key
● Recovery Password

● AES 128 CBC
● AES 128 CBC + Elephant diffuser
● AES 256 CBC
● AES 256 CBC + Elephant diffuser

AES

Volume
Master

Key
AES

Volume
Encryption

Key

RSA

BitLocker (Windows)

● Native on Linux

● strict separation of
● disk encryption engine

dm-crypt – device-mapper crypto target (kernel)
● key management (LUKS) and configuration

cryptsetup – userspace

● never implements crypto primitives itself
● kernel cryptoAPI
● userspace crypto libraries

● variability
● supports most of the other subsystem formats

(with exception of diffuser and nonstandard encrypted sector size)

LUKS / dm-crypt

● maps virtual plaintext device
● no key management (ioctl uses key directly)

● device stacking (~ chained ciphers)

Cipher specification examples
● aes-cbc-essiv:sha256 (AES, CBC, ESSIV)
● aes-xts-plain64 (AES, XTS, IV is sector number)
● aes:64-cbc-lmk (loop-AES multikey compatible mode)

... and many other compatible modes (not secure)
● twofish-ecb
● serpent-cbc-plain64
...

dm-crypt (kernel)

LUKS (Linux Unified Key Setup)

LUKS hdr
params

key material
slot 1

key material
slot 8 DATA...

password volume key

LUKS DISK

● Simple key / passphrase management system for dm-crypt

● de facto standard for disk encrytpion in Linux, portable
● more passphrases (keyslots)
● uses iterated PBKDF2 store key – slow down dictionary attacks
● passphrase change – no need to reencrypt disk
● AF-splitter – anti-forensic (fw sector reallocation issue)

 thanks for your attentionthanks for your attention

http://imgs.xkcd.com/comics/security.png

