RED HAT
DEVELOPER CONFERENCE 2012
February 17-18'"

devconf.cz

FACULTY of INFORMATICS
MASARYK UNIVERSITY, BRNO

Disk encryption ...

(not only) in Linux

Milan Broz

mbroz@redhat.com

mailto:mbroz@redhat.com

FDE - Full Disk Encryption

* FDE (Full Disk Encryption) — whole disk
* FVE (Full Volume Encryption) — just some volumes

* (dis)advantages?
+ for notebook, external drives (offline protection)
+ transparent for filesystem
+ no user decision later what to (not) encrypt
+ hibernation, swap
+ key removal = easy data disposal

- more users — whole disk accessible
- key disclosure — complete data leak
- for sw sometimes performance problems

FDE - Full Disk Encryption

Examples (illustrative)

(< userspace e Truecrypt (FUSE handled)
SW < e sw driver
(encryption on CPU)
e dm-crypt, Truecrypt (native), loop-AES, ...

\] AES-NI, Via Padlock, special chips (mobile)
e driver + hw
[(hw acceleration)

hW< » disk controller Chipset FDE

External disk drives with USB interface with "full hw encryption™

\ * on-disk HDD FDE .
special SSD/USB drives

Block device, sector

» Sector - disk atomic 10 unit

e 512 bytes, 4096 bytes

» Block device
« disk, partition, virtual block devices (MD, device-mapper, loop)
 block device stacking
To avoid block/sector confusion here

sector = disk unit (typically 512 bytes)
block = encryption block (typically 16 bytes)

 FDE - encrypted block device -> decrypted block device

Plaintext & ciphertext

 plaintext — original (open) data
- virtual device

 ciphertext — encrypted data
- hw disk

« symmetric algorithms (secret key)
* speed, throughput (~disk)

* block as atomic unit (~16 bytes)

plaintext
(readable data)

1L

block cipher

1L

ciphertext

(encrypted data)

——Dblock—

Cipher block mode, Initialization vector

« BLOCK (of cipher) < SECTOR (of disk)

e split sector to blocks

 chained/parallel processing

block mode blockl (~16 bytes) Cipher

block2 block

* Problem: block3 mode
same data in different sectors

— different ciphertext blockX

initialization vector IV (tweak) Sector

(different for every sector)
 usually derived from seq. sector number (and key, if needed)

* e.g. ESSIV — Encrypted Salt-Sector IV

Cipher block mode - examples

How a single change in plaintext changes ciphertext?

XTS CBC

« CBC - cipher block chaining

 ciphertext XOR with next block

+ XTS | XEX (XOR encrypt XOR) sector

 internally 2 keys
- key for tweak
- encryption key

|V can be directly sector number
(known to attacker)

changed byte changed block
(in plaintext) (in ciphertext)

Block mode vs sector

Goal:
arbitrary change (plaintext) — change of the whole sector (ciphertext)

Solution:
« wide mode (encryption block size = sector size)

e requires at least 2x encryption loop

 modes are patent encumbered (~ but free standard EME-2)
e not used in implementations

« additional operations
example — Elephant diffuser in Bitlocker

« special operation before CBC (mix/rotate input)

» tweak key (independent of encryption key)

Disk encryption + data channel encryption

Example: ISCSI exported encrypted disk, decryption on client side.
Is there plain data on data channel? No.
So itis secure? No.

* FDE is offline protection (stolen disk)

e attacker cannot access snapshots in time
(repeated access to hw, much worse attack vectors)

 mode designed for transparent disk access
(IV is always constant for sector)

* Encrypted data channel

e Attacker can listen the whole communication
but he cannot replay data — reply attack.

NEVER use encryption designed for exact use for something else,
solve problems separately (FDE + ipsec).

Key Management

Key generator

e very important for the encryption system security
Note difference: encryption key / unlocking passphrase

e encryption key
random, unigue

generated by RNG (Random Number Generator)

DILBERT By Scott ADaMms

TOUR OF ACCOUNTING |§ ARE
2 NINE NINE :| vou THAT'S THE
OVER HERE F NINE NINE 2| URE PROBLEM
WE HAVE OUR 3 NINE NINE THAT'S WITH RAN-
RANDOM NUMBER |§ el RinDoMmg: DOMNESS
«, GENERATOR. 3 YOU CAN
% E 3 | NEVER BE
H SURE.
= 3
L3 "ﬂé : /A
= o = 9
;2? /“7 zf E P L
Gy Y/ :

or derived from passphrase
- I.e. PBKDF2 (Password Based Key Derivation)
- usually not desirable (~restricted in security policy)

Key storage

 outside of encrypted device
« token, SmartCard, TPM, EEPROM
« file (protected by another encryption system)
* (encrypted) on another disk (separation of metadata)

* on the same disk (with encrypted data)
 metadata (header)
 unlocking using passphrase of different key
 brute force and dictionary attack contermeasures
(slow down attack)
* hw problems (e.g. firmware sector reallocation)

* integration with key management tools
« enterprise use (LDAP, Active Directory, ...)

Key removal

» key removal (wipe of key storage area) = data disposal
 intended (secure disk disposal)

e unintended (error)
e the most common problem
e metadata overwrite — operator error
* hw error, bad sector, controller, TPM, ...

Key recovery

Trade-off between security and user-friendly approach.

 disk copy (metadata)

« Key Escrow (key backup to diferent system)
« duplicated metadata on disk

* recovery key to regenerate encryption key

« wrongly designed user-friendly "extensions" Our Disaster Recovery Plan
destroys security Goes Something Like This...

Examples (3rd party Linux based NAS ...)
* CVE 2009-3200 - undocumented recovery key in flash memory,

allows local users decrypt the hard drive.

CVE 2009-3278 - use the rand library to generate recovery key,

brute-force attack possible.

CVE 2008-1431 - firmware stores a partition encryption key

In an unencrypted file with base64 encoding.

acks ...

Attacks always get better, they never get worse.

 Attacks to algorithm

« Attacks to implementation
- e.g. side channels

« Obtaining key or passphrase in open form
- hw attack (keylogger, Cold Boot)
- malware — boot / OS / hypervisor modification
- social engineering

If you let your machine out of your sight,
It’s no longer your machine.

You are here
ggf%fP
..,::'_.'?_"T'-" e _."r

Examples of FDE implementations

Chipset FDE

* Encryption on disk controller
« example: USB3 external disk enclosure
« standard SATA disk
e AES-256 encryption on chipset

Chipset FDE

* Encryption on disk controller
e which mode is used?
« where and how is the encryption key stored?
 HW board failure — what happens?

* Recovery: you need the same board / firmware
* Encryption always present (even if password is empty!)
« weak part: connectors on board

* proprietary key storage format
* proprietary key handling protocols

Truecrypt

Truecrypt, www.truecrypt.org

the most known "opensource" disk encryption system

AES, Twofish, Serpent
chained ciphers (e.g. AES-Twofish)
XTS mode

hidden disk (including disk with OS), bootloader
not using TPM

on-disk metadata encrypted (no detectable header)
duplicated metadata
recovery CD

on Linux with dm-crypt backend
tc-play reimplementation with BSD license

loop-AES

loop-AES, loop-aes.sourceforge.org
 project outside of the main kernel tree
 loop device extension

« AES, (Twofish, Serpent)
« modified CBC mode (IV derived from sector, key and plaintext)
« multikey — 64 keys (modulo sector) + key for IV

« external store for key in file (GPG encrypted)

« dm-crypt / crypsetup loop-AES compatible mode

BitLocker (Windows proprietary)

Native FDE in Windows Ultimate edition

In future combined with "secure boot" (Windows 8)
many options (system policy)

TPM 1,

TPM + PIN LRA 2 volume Volume
TPM + Startup Key Y Master [AES > Encryption
Clear Key ‘ K

Startup/Recovery Key >E> 4 Key
Recovery Password

~

AES 128 CBC
AES 128 CBC + Elephant diffuser
AES 256 CBC
AES 256 CBC + Elephant diffuser

BitLocker (Windows)

C:\>manage-bde -status
BitlLocker Drive Encryption: Configuration Tool version 6.1.76081
Copyright {C) Microsoft Corporation. All rights reserved.

Disk volumes that can be protected with
BitLocker Drive Encryption:

VYolume C: [1

[0S VYolumel
Size: 19.71 GB
BitLocker Version: Windows 7
Conversion Status: Fully Encrypted

Percentage Encrypted: 100%

Encryption Hethod: AES 128 with Diffuser
Protection Status: Protection On

Lock Status. Unlocked
Identification Field: None —
Kev Protectors: File Action View Help

Eﬁrﬁgp?gilksgssword |2 = | |7

=] Windows Components ;I
| ActiveX Installer Service

socaton o
AutoPlay Policies

Backup E} Choeose drive encryption method and cipher strength
Biometrics

BitLacker Drive Er

| FxedDataDri (NotConfigured ~ comment
To verify that this is the correct recovery key | Operating Sys

with what is presented on the recovery screen. | Removable D ©* Enabled
Credential User In Dicabled
Desktop Gadgets .
Desktop Window & Supported on: [At jeast Windows Vista
Digital Locker
Event Forwarding
Ewvent Log Service
Ewvent Viewer
Game Explorer
HomeGroup Select the encryption method: This policy set

Internet Explorer cipher strengt
Internet Informati | [AES 128-bit with Diffuser (default) j setting is appli
encryption me

or if encryptic
Encryption De|
information at

B BitLocker Drive Encryption

i

BitLocker Drive Encryption Recovery Key
Pt

The recovery key is used to recover the data on

[+
Ed 8 A R

Recovery key identification: B32663A4-783D-33
Full recovery key identification: B3268BA4-783D-

BitLocker Recovery Key: = |
T28327-193815-112648-838772-108271-011233-65032

Options: Help:

Walor Yoo =Tl Rt Al AES 128 -bit with Diffuser (default)
MNetMeeting AES 256-bit with Diffuser
Network Projector |[AES 128-bit
Online Assistance ||AES 256-bit

CalAld A A A A A A A EA A LA A

LUKS |/ dm-crypt

 Native on Linux

e strict separation of
 disk encryption engine
dm-crypt — device-mapper crypto target (kernel)
 key management (LUKS) and configuration
cryptsetup — userspace

e never implements crypto primitives itself
» kernel cryptoAPI
 userspace crypto libraries

« variability
e supports most of the other subsystem formats
(with exception of diffuser and nonstandard encrypted sector size)

dm-crypt (kernel)

* maps virtual plaintext device
* no key management (ioctl uses key directly)

e device stacking (~ chained ciphers)

Cipher specification examples
» aes-cbc-essiv.sha256 (AES, CBC, ESSIV)
e aes-xts-plain64 (AES, XTS, IV is sector number)
e aes.64-cbc-Imk (loop-AES multikey compatible mode)

... and many other compatible modes (not secure)
 twofish-ecb
e serpent-cbc-plain64

LUKS (Linux Unified Key Setup)

e Simple key / passphrase management system for dm-crypt

« de facto standard for disk encrytpion in Linux, portable

* more passphrases (keyslots)

* uses iterated PBKDF2 store key — slow down dictionary attacks
» passphrase change — no need to reencrypt disk

» AF-splitter — anti-forensic (fw sector reallocation issue)

LUKS DISK

LUKS hdr || key material key material
params slot 1 slot 8

volume key

N

password

|A CRYPTO NERD'S WHAT \WoU e

IMAGINATION f-".ﬂTLlHLL"f HAPPEN:

HIS LAPTDPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
EUJHER To CRACK\T. THIS $5 WRENCH UNTIL

Uo%e ‘B'IT R'ﬁﬁ.‘ GOT T

ELPET" OUR
EVIL F'LF':H

http:/limgs.xkcd.com/comics/security.png

thanks for your attention

