The Future of Disk Encryption ...

... with LUKS2

Milan Brož, Ondřej Kozina
mbroz@redhat.com, okozina@redhat.com

DevConf, Brno
February 7, 2016
Agenda

- Linux Unified Key Setup (LUKS)
- Disk Encryption Use Cases
- (Mention of) Cryptography
- LUKS2
- Online Reencryption
- "User Survey" Notes
FDE – (software) Full Disk Encryption

- Transparent encryption on disk sector level
 - Transparent for filesystem
 - No user decision what to encrypt
 - Encryption of hibernation and swap partitions

- **Volume key** – key used to encrypt data

- **Passphrase** – unlocks encrypted disk
Linux FDE

- **dm-crypt** (kernel module) + **cryptsetup** (control utility)

- **LUKS** (Linux Unified Key Setup)
 - On-disk format to store encrypted volume key
 - Implemented inside cryptsetup library
LUKS history

2004 dm-crypt (kernel 2.6.4) + cryptsetup 0.1 [J.Saout]
- Volume key derived from passphrase

2005 cryptsetup-luks (LUKS extension) [C.Fruhwirth]
- Key is random, encrypted in keyslots
- Compatible on-disk format
- Independent keyslots

2012+ stable libcryptsetup API
- loopAES, TrueCrypt support
LUKS Common Use Cases

- **Local encrypted disk**
 - Encrypted notebook, portable drives, ...
 - Corporate notebooks – on-demand recovery

- **Datacentre disks**
 - Different physical access policies in-place
 - Data disks (also Gluster bricks, Ceph OSDs, ...)
 - Automatic unlocking?

- **Mobile devices**
 - *Specific environment, usually non-LUKS metadata*
LUKS, Threat Example

- Asset: Confidential data on-disk
 Threat: Stolen disk
 => Strong encryption with random key
 => Dictionary password attack resistance

- LUKS provides data confidentiality only

- No integrity protection

- Protection only of locked (powered-off) device
Cryptography and Disk Encryption

Key Management

- It's all about weak passwords :-)
- Password-based key derivation functions
 - PBKDF2
 - Argon2 (PHC winner, planned)
- No Trusted Platform Module (TPM) bindings
- No 2nd factors authentication.
- No secret sharing.
Disk Sectors Encryption

Block Cipher (like AES) – Encryption Modes
- Narrow modes per sector (CBC, XTS)
- No wide mode (patents!)
- No support for authenticated encryption modes
 - today just "Poor man authentication"
- Volume key change, algorithm change, ...
 - Device reencryption
 - Not possible online
LUKS2 ... OMG Why?

Lifetime of data on encrypted disk is long-term.

We have to think in this time frame.

Security Hardening

- Key derivation – PBKDF2 is not fixable in long term
 - GPU, ASIC speedup, no threads, no memory cost
- Integrity: no option for it
- Volume key or encryption upgrade (online)
LUKS2 ... OMG Why?

Missing Extensibility

- No specific key slot processing
 - Using TPM, HSM, PKCS#11 SmartCards
 - Remote key or automatic unlocking
 - Independent keyslot attributes

No header metadata redundancy

No header visible metadata corruption detection

...

Note that LUKS2 is still an experiment!
LUKS2 on-disk

- New features without on-disk format change
- Abstraction, keyslot handlers interface ("plugins")
- In-place upgrade / downgrade from LUKS1 (partially)
- LUKS2 targets more "enterprise"
- LUKS1 remains stable, supported "forever"
- Redundant header (NOT redundant key data)
- Header corruption detection (checksum)
- Resistance to write on fail (epoch recovery)
- Binary part (for blkid – UUID, magic, ...)
- Extensible metadata format (JSON)
LUKS2 on-disk JSON Schema

```
{
  "keyslots": {
    "0": {
      "type": "luks2",
      "state": "active",
      "key_length": 64,
      "salt": "Cernx3ZUN1yBCPZpure243e2o1sHlZaNPu81HZikku8YU=",
      "kdf_alg": "argon2",
      "iterations": 1,
      "memory": 1024,
      "parallel": 4,
      "stripes": 4096,
      "enc_alg": "aes-xts-plain64",
      "hash_alg": "sha256"
    }
  },
  "segments": {
    "0": {
      "type": "crypt",
      "keyslots": ["0", "1", "2", "3", "4", "5", "6", "7"],
      "offset": 2097152,
      "iv_offset": 0,
      "length": -1,
      "cipher": "aes-xts-plain64",
      "block": 512
    }
  },
  "areas": {
    "0": {
      "keyslots": ["0"],
      "offset": 32768,
      "length": 258948
    }
  },
  "digests": {
    "0": {
      "type": "luks1",
      "keyslots": ["0", "1", "2", "3", "4", "5", "6", "7"],
      "hash_alg": "sha256",
      "iterations": 1000,
      "salt": "JXqvQ6MqyLGeQ6pkrHqUT3zcHvJYu3iEk+E3gnTC6o=",
      "digest": "onmWhnCPRZ3vv5zTe9\_tGgC5Cu\_Jp3acVNL2AAHNfQ="
    }
  }
}
```

Keyslots
- "How a key is stored and encrypted"
- Typed (handler plugins)
- Several keyslots – the same key

Segment(s)
- "Where are the user data"
- How are encrypted
- Link to keyslots with key

Area(s)
- Binary area for keyslots (if needed)
- Non-redundant key material

Digests
- "How to check derived key validity"
Why Reencrypt?

- Different data lifetime and algorithm lifetime
- Prevent access to the data from header backup
- Mitigate risk of device snapshot replay attack
- Regular volume key change (policy)
- Offline reencrypt utility available since cryptsetup v1.5.0
Why Online?

• Full disk (re)encryption may take long time
 - Not likely feasible offline with HA systems

• Complicated offline reencryption of root device
 - Limited set of tools to support error recovery
 - Interruption could make system unbootable
Online Reencryption – New Features

- Resilient reencryption metadata
 - stored in LUKS2 format (inside header)
- Device can be unlocked even after
 - Intentional interruption (SIGTERM)
 - System crash
 - Power fail
- Interrupted reencryption resume (on demand)
- Device can be unlocked even if partially reencrypted
Reencryption Progress Schema

- Sliding window
- Resistance to interruption (hash of old data)
NOW FOR SOMETHING COMPLETELY DIFFERENT...
Disk Encryption "User Survey"

- Collected lot of ideas how to [not] ask IT people :-)
- Many of us did not understand it was about "feeling"
- ... Eventually only Red Hat participated (memo-list)
- 141 completed responses
- Part of Bachelor thesis
 https://is.muni.cz/th/409782/ (not visible yet)
Disk Encryption "User Survey"

- 6% does not use encryption (despite company policy :-)
- 96% believes that encryption increases security
- 20% lost data on encrypted disk at least once
 - 59% of them lost data forever
 - 18% of them suffered corruption of encrypted disk
- 62% have backups of encrypted data
- 1% have problem with slowdown caused by encryption
 - 75% did not notice, 19% negligible slowdown
Conclusion

- We need both LUKS and LUKS2 formats
 - LUKS2 provides extensibility interface
 - Plugins will come later (with your help!)

- Integrating new strong cryptography
 - Conservative way

- Think about providing user-friendly way to
 - Setup secured systems
 - Backup and recovery integration
 - Painless upgrade path
Thanks for your attention.

Q & A ?

mbroz@redhat.com
okozina@redhat.com